Hydrous Ferric Oxide (HFO) vs. Hematite

- · Thermodynamically distinctive bulk phases, but the surfaces could be similar due to hydration of the interface.
- \cdot Hypothesis \Rightarrow The surface of HFO is energetically similar to the surface of hematite.
- · Objective \rightarrow Compare the reactions of HFO and hematite with U(VI) and Fe(II).
- Experimental → The reactions of interests were (1) preparation of sub-micron hematite, (2) sorption of U(VI), and (3) redox of U(VI) and Fe(II) with HFO or hematite.

Preparation of sub-_m hematite

- Thermal-forced hydrolysis of FeCl₃ solution, followed by dilution to pH 5 or filtration through 10kDa membrane until pH 5 reached.
- · Mossbauer spectroscopy showed hematite with an HFO impurity for diluted sample, and pure hematite for the membrane-cleaned sample.
- \cdot However, [Fe(III)] $_{\rm dissolved}$ measured while cleaning was in equilibrium with HFO.
- · Therefore, surface of hematite consists of HFO-like layers

Evidence 2: Sorption & Precipitation of U(VI)

Solubility of UO₃ in the presence of both HFO and hematite was consistent with hydrolysis and solubility constants in Langmuir (197°)

HFO

Hematite

After accounting only for differences in pH_{zpc} and surface area, U(VI) sorption to both phases was well modeled using same surface complexes (>FeOUO₂ 0 , >FeOUO₂ $^{+}$, >FeOUO₂ $^{-2}$, >FeO(UO₂)₃(OH)₅ 0 , and >FeO(UO₂)₂(OH)₂ 0).

Hematite data modeled using the same sorption constants &

Evidence 3:

Redox reactivity of Fe(III)/Fe(II)

toward U(VI)

- \cdot 2 sorption conditions (pH 6.8): Low and high $U(VI)_T$, corresponding to 0.5 and 5.0 U/nm^2 .
- \cdot Reduction occurred with low $U(VI)_T$, but no reduction was observed at high $U(VI)_T$ experiment even with higher thermodynamic driving force.
- \cdot For both HFO and hematite, final redox of low $U(VI)_T$ was consistent with goethite solubility.
- \cdot Mossbauer analysis confirmed that both HFO and hematite were partially converted to goethite, i.e. more goethite was formed than due to oxidation of Fe(II) by U(VI).
- Goethite from hematite showed wider magnetic splitting than from HFO, which is consistent with wider magnetic splitting of hematite than HFO. Therefore, goethite is present intact with the

Low U(VI)_T experiment

High U(VI)_T experiment

Fe(III) activity is controlled by goethite, regardless of initial solid phase

No reduction observed for high U(VI) loading on surface.